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ABSTRACT

This study is concerned with the static tensile performance of braided ropes.
Statistical theories are applied to determine the most probable rope strength. In
addition to the structural modelling, the failure strain distribution of individual rope
components is aiso included. Extremes of no-friction and infinite-friction (no rela-
tive movement) conditions are considered. A Monte Carlo technique and probability
model are used in the former case where no load transfer is considered around failed
strands. In the latter case, a failure probability analysis is developed based on a pro-
posed local load-sharing rule. Experimental results agree well with the predictions
for smail nylon and polyester double-braided ropes. Such a statistical approach also
provides a promising method for estimating the effects of local wear/abrasion damage

on subsequent performance.
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1 Introduction

The theoretical strength of materials, which may be approximated as 10 % of the
elastic modulus by considering the atomic bonding [13}, is usuaily much higher than
actual observed values. This discrepancy was first ascribed to the presence of flaws
[7]. The position and strength distribution of such flaws are, in general, random
occurrences. Thus, the event of the failure can be modelled as a stochastic process

and will be approached here based on statistical analysis.

The common (though incorrect) practice is to assume that the strength of a simple
bundle of paraliel filaments is equal to the average strength manifested bv individual
filaments when tested separately, failing due to its stochastic nature. As pointed out
by Coleman (3] the ratio of the tensile strength of a bundle to the mean tensile strength
of the constituent filaments decreases monotonically with increasing dispersion (i.e.
coefficient of variation) in the strength of the constituent filaments. In general, the
tensile strength of a large bundie has the same order of magnitude, but is less than

the mean strength of the component filaments [3).

Many successful statistical theories have been proposed in the literature to describe
fracture phenomena in metals, textiles, and other materials. Peirce {15] was among
the first to investigate the relationship between specimen length and its strength,
from which followed the weakest-link theory, i.e. that the strength of a test specimen
is that of its weakest element of length. The tensile strength thus decreases with
increasing length of the specimen in a way which is definitively calculated from the
distribution of strength of shorter specimens. By a similar approach, Weibull [29]

proposed a useful distribution function as
Flz)=1—e &7 (1)

where ¢ and m are material constants. The Weibull distribution, in which the weakest-

link concept is implicitly considered, is more tractable than the normal distribution
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(assumed by Peirce).

A more general aspect of statistical models applicable to the prediction of material
strength was discussed by Epstein {5]. Daniels (4] and Giicer et al [8] later developed
statistical models for the strength of bundles of fibers. In particular, Giicer suggested
that a second fracture mode exists, which is not controlled by the weakest element if
the elements fracture independently. Zweben and Rosen {25,31,32] further applied the
chain-of-bundles theory to study composite strength. They successfully demonstrated
that the composite failure is associated with the accumulation of many fiber breaks.
In their study, the matrix is considered to be purely a medium for the transmission
of shear stress between the fibers. The load concentration caused by fiber breaks was

later accounted for in their theory to improve agreement with experimentai data [32).

More recently, Phoenix and co-workers (9,10,16,21,28] reported on a series of stud-
ies based on the chain-of-bundles probability model. Their treatment is more generai
in terms of statistics, as related to fiber/matrix composites and fibrous bundles such
as yarns and cables. The load-sharing rules after fiber breaks occur were extensively
explored. Shahpurwala and Schwartz [27] attempted to predict the tensile strength of
woven fabrics when the strength distributions of the constituent yarns were known.
They adopted Daniels’ approach [4], in which the fabric was considered as a loose

bundle of yarns, with no yarn interactions.

Beyond the ideal geometry of perfectly parallel elements, Phoenix and Taylor [20]
and Phoenix (18] considered the effect of slackness on the bundle strength distribution
by introducing a second random variable of individual length I. This slack effect
turned out to be very important when twisted fiber bundles (such as yarns and cables)

are considered {19].

It is important to note that all of the above theories were limited to elastic ma-
terials, where in particular, material strength is independent of the loading rate.

Therefore, attempts to calculate the tensile strength distribution of a structure (i.e.



generalized bundle) from a given probabilisitic di -ribution of the constituents are

meaningful in light of the above referenced reports.

In this study, statistical approaches are applied to predict the tensile behavior of
small synthetic fiber ropes. The ropes of interest are doubie-braided, composed of
two separable layers, i.e. sheath and core (see Figure 1). In general, the fibers within
the same layer are (by specification) identical. However, different materials may be
used in either layer. In the current study, the same generic yarn type was used in the

sheath and core lavers. but in different deniers.

2 Statistical Strength of Ropes

In the context of common bundle theory, rope can be considered as a bundie of
strands. A strand (or yarn) is here regarded as a unit element, instead of a fiber
in the previous case. At first, no friction or interaction between strands is assumed
{hence no load sharing whatsoever); other frictional constraints will be considered
later. The geometry of the individual strand is described as a helix with a sinusoidal
undulation in radial direction {12,1,26]. The primary effect of the helical geometry
on the behavior of the parallel element model is to alter the local element strain
with respect to the axial rope strain. In the structural models of ropes (12,26,30),
assumed geometries of rope strands before and after stretching can then be used to
calculate local length difference (hence local strand strain). In this manner, a local
strain distribution is determined with respect to an axial rope strain. The total rope
rupture occurs when a local maximum strain reaches its failure value. This paper

follows an approach similar to that of Phoenix {19].

Let X;(e-) be the component of the tensile force of element 7 ; in the direction of
the rope axis at an axial rope strain of €,. Where the i jth element is the jth element

in layer ¢. Since there are only two layers in a double-braided rope, ¢ runs from 1 to



2. Also, §i,’s are identically independent random variables representing the breaking

strain of the ¢ jth element with the cumulative density function (c.d.f.), F(e).

Consider the load-strain relationship of element i j to be

0 for &; < 0
Yisles) = ¢ qi(e;) for 0 < & < &
0 for £ii < €&
where Y; : the range of tensile force on the element ij
€; : the local strain of the element ij
¢:; - the finite positive vaiue of tension in element ij

Here the element can only support a load in tension, and it carries no load after

it breaks. Thus,

0 for 6.'_,‘(6,.) < 0
Xiileis) = { qijlei;(e)]) cos e for 0 < e5(e) < & (2)
0 for Li < €ij(e)

where a;; = local helix angle of the jth element in layer :.

Therefore, the rope load at rope strain ¢,, Q,(¢, ), is the sum of the element forces
)(.‘j:
Qn(er) = ZZ-’{ij(er) (3)
=1 =1
That is, the rope strength Q7 is the maximum load achieved as the rope strain is

increased.

The actual local load distribution of individual strands (prior to first strand fail-
ure) depends on the frictional constraints imposed by the surrounding material. Two
extreme conditions, i.e. zero friction and infinite friction, are considered as follows.
In the former case, no load sharing after initial strand failure is required; it can be

analyzed by the Monte Carlo technique or the maximum strength analysis. In the
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latter case, a local-load sharing rule was developed to account for the local force

concentration, and a failure probability model was established.

2.1 Monte Carlo simuiation

In brief. Monte-Carlo simulation is a stochastic-process simulation (also called discrete-
event simulation) {6]. It refers to the use of mathematical models to study systems
that are characterized by the occurrence of discrete, random events. These individual
events are represented by random variables whose values are generated by a computer.
The randomness that is encountered in a real system can thereby be synthesized, al-
lowing the behavior of the original system to be reproduced artificially. Such studies
aliow assessment of the expected behavior of the system.

For the rope problem, the main procedure is to simulate the outcomes of Q.
To achieve this, the first step is to generate the random variables (rupture strains),
&i;'s, that are governed by a Weibull density function. The inverse transformation
method offers a simple and straightforward approach to the generation of the required
nonuniform random variate, £;;.

For each simulation run, n random numbers between 0 and 1, U/;;’s, were generated

using a computerized random-number generator. Then the n numerical values for the

failure strains of the elements were obtained by the following formula [19]

§ij = Eo[ln(l —1U‘-5 )]’L

where ¢ and r are the scale and shape parameters of Weibull function of the failure
strains for the strands. The second step is to compute the rope load, @, from
equations 2 and 3, and then @}, is given by the maximum value, i.e. rope strength.
Repeating the steps, enough outcomes are generated for Q) to estimate the expected

performance measures of strength, mean and standard deviation.



2.2 Maximum strength analysis

Apart from the simuiation, there is a second approach which can be used to estimate
the strength of ropes. This analysis was originally proposed by Platt et al [22,23,24)
to study the translation of mechanical properties of fibers into yarns and strands.

The following conditions are assumed in this study:
1. The load-strain curves are identical for individual strands until failure.
2. The failure strains follow a definite distribution, F'(¢;;}, such as Weibull type.
3. No interaction (hence no friction) occurs between strands.
4. Rope load is equally carried by each unfailed strand.

For a given rope strain, the actual strain along the rope strand can be calcu-
lated [30]. The relationship is obtained based on the assumed geometry. The rope
load equals the summation of force components along rope axis over all strands.

Therefore,

Qﬂ(ér) = Nsmfﬁ(fr)]

where Qn(€,) : rope load at a rope strain e,

Q : average strand force along rope axis at a rope strain ¢,
€;j{€-) : actual strain of the j-th strand in layer i at a rope strain ¢,
N : total number of rope strands

N, : number of survival strands at a rope strain ¢,

Since the failure probability F(¢) is known (see equation 5)
N, = N(1 - F(e)) and @nler) = N(1 = Fe;; NQ

The rope strength is the maximum value Q, can achieve. Hence, the solution of

% = ( yields the maximum value and the corresponding rope strain at failure.
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For a double-braided rope, (J can be expressed as:

2 Xis

-_— 7=1

P = T 1= 1,2
where Xi; = defined in equation 2
N; = total number of rope strands in layer :
Thus. Qnle.) = (1 — Fi(e)) Z Xy + (1 — Fyley)) ZX:,’ (4)
=1 i=1

where £} 2(¢,) = failure probability of strands in layers 1 and 2 at a rope strain e,.

Since there is no mathematical closed form solution for ¢J,, it is difficuit to cal-
culate its first derivative. However, the maximum value of ¢, can be found by a

numerical technique.

2.3 Failure probability analysis

In order to explore the frictional effect on rope strength, a local stress concen-
tration around a broken element must be considered, i.e. a local-load sharing ruie

should be implemented.

For a given rope strain, the local strand strain can be calculated based on the
assumed geometry, such as in the infinite friction case [30]. Then the survival prob-
ability of each strand is determined from the failure strain-probability curves. The
total survival probability of this strand assembly should be the summation of all

possible survival modes except the one in which all strands fail.

Pt = ﬂz—:l P
1=0
and P, = { Si(€,)Sa(e.) -+ Sale,) i =
File) - Filer)Sivaler) -+ - Sple,) i %0



where P, : survival probability of ¢ strands failed and (n — ¢) strand

survived.
Si(e.) : survival probability of strand 7 at a given rope strain e,.
F{e.) : (failure probability of strand 7 at a given rope strain e,.
= 1—Sie)
n :  total number of strands

The total survival probability is the counterpart of the total failure probability,

le.
Piot"—"l_'FlF2"'Fn

It is worth noting that the load redistribution around a broken element is taken
into account for calculating the survival probabilities of the neighboring elements.

The rules are:

1. The first break will take place in the highest strain location.

2. The subsequent breaks will happen in the next highest strain locations after the
first break.

3. After the first strand fails (designated A in Figure 2}, the load originally carried
by the failed strand will be totally transferred to the neighboring parallel strand
(B in Figure 2).

4. After both parallel strands fail, they snap back and are stopped by the next
cross-over strands, which transfer the load to the surrounding parallel strands

equally (C,D.E,F in Figure 2).
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3 Results

Specimens of strands were carefully removed [rom ropes and tested as described
carlier (30]. The Weibull distributions of failure strains were obtained as follows

(gauge length of 12 in ) and plotted in Figure 3

Fle)=1- exp[—(ﬁ-)“‘“] for PET yarn (5)
Fley=1- exp[-—(ﬁ)'”‘] for nylon yarn

Rope tensile tests were conducted on an Instron servo hydraulic machine in the
laboratory. Eve spiices were used to properly mount 2 ft rope specimens on the
machine. The rope was then subjected to 10 cycles of from 0 to 5% of the breaking
strength at a frequency of .05 Hz. Immediately following the last cycle, the rope was

loaded to failure at a load rate setting of 30 lbs per second under load control mode.

3.1 Monte Carlo simulation

Figure 4 shows the typical curve of Q, vs. ¢, where the load drops indicate the
occurrence of strand breakage of either layer. Since the core and sheath layers of a
double-braided rope are independently considered, two maxima are observed cotre-
sponding to the failure of each layer. The rope strength Q7 is indicated by the peak
value. One hundred and sixty simulations were performed for each type of rope. The

cumulative distribution curves of rope strength @, are plotted in Figure 5.

It should be noted that the load @, versus rope strain ¢, curves of Figure 4 are
determined for the combined sheath and core braids. Determination of loads in the
sheath strands is based on the assumption that the core strand is in place, preventing
collapse of the sheath. It should be emphasized that this simulation treatment ex-
cludes load transfer and thus assumes that sheath and core layers act independently

of each other. Qbviously where sheath and core interact, the first load peak which
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occurs in Figure 4 will likely be followed by total rupture of the rope.

3.2 Maximum strength analysis

@n vs. & is plotted in Figure 6. The strengths of nylon and PET ropes are determined
to be 2161 lbs and 2377 lbs respectively. The corresponding failure strains are .276
and .153 for nylon and PET. These predictions (as per Platt) and the resuits of the
previous Monte Carlo simulation are summarized in Table I. The experimental data
and the prediction of the structural modelling [30] without considering the distribu-
tion of failure strain of individual strands are also shown with agreements to 10 and
15%. Far better predictions are obtained by considering variation in the strengths of
individual strands (or yarns) and the strength/strain values based on the statistical

models are seen to be within a few per cent of the experimental values.

3.3 Failure probability analysis

The cumulative failure probability equais 1 — Pyoq. This is plotted in Figures 7 and
8 for PET and nylon ropes respectively. For comparison, the predictions of no-load
transfer case with zero friction constraints are also included in the same figures, as
well as the corresponding failure density functions. The modes are good indications
of the rope failure strains. Similarly, the probability can be plotted against rope load.
Again, the rope strength can be obtained from the most probabie value. The results

are summarized in Table 2.
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4 Discussion

4.1 Comparison of different approaches

As discussed in References {12,26.30], the structural modelling approach provides
the basis to investigate the behavior of ropes. Different frictional conditions are
considered. In general, the trends agree for both nylon and polyester ropes. In
addition, the stochastic nature of the failure strength of individual elements is also
taken into account by the statistical analysis. In this study, the load-strain curves
of individual strands follows a common curve truncated at different positions for

different strengths.

For the infinite friction case, the consequences of the strength variation of individ-
ual strands are expected not to be significant because that weak flaws are not likely
to be located at the highest strain areas. However, on the other hand, the variation
is expected to play a more important role in the no friction case. This is due to a
averaging effect so that weak flaws can greatly reduce the rope strengths. Indeed, as
shown in Table 1 for the no friction case, much better agreements with experimental

data are found when statistics are considered.

4.2 Local damage effect

The statistical distribution of strand strength (or failure strain) was obtained from
a series of tests on virgin materials. It is quite reasonable to assume a uniform
flaw distribution along the strand axis, since the manufacturing process is uniform
and continuous. However, the uniformity is violated after the material is employed
in service. For example, marine ropes may be subjected to a very severe environ-
mental conditions. A certain portion of the rope strand is directly exposed to the

environment. Therefore, a more progressive damage could be developed, such as pho-
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todegradation or abrasion. Even inside the rope, internal abrasion can also resuit
in serious damage. [n general, such local iamage is unavoidable and reduces the
performance of ropes (2]. In order to take this effect into account, the distribution
of failure strengths (or strains) should be properly expanded. The distribution tests
should include several partially damaged strands to study the effects on the final

performance.

4.2.1 Reduced failure strain distribution

Consider a failure strain distribution of rope strands after being deployed in service
for a period of time. As reported by Hsu [12] and Backer (2] in a pathological study
of double-braided ropes (Puget Sound Ropes), only 50-60 % of the new yarn strength
was found. Based on this information, new failure strain distributions as shown in
Figure 9 can be generated. For case 1, a 60 % retention is assumed (i.e. the initial
value of the failure strain of the new rope in Figure 9a is reduced from .18 to .11), but
the ultimate failure strain (.27) is unchanged. Then, the scale and shape parameters
of a Weibuli distribution are found to satisfy the above conditions. In case 2, the
same shape parameter of the original distribution is used, but the scale parameter is

scaled down 60%.

The rope strength predictions from this failure probability analysis are now plotted
in Figures 10 and 11 for the infinite friction and for the zero friction (no load sharing)
cases respectively. For case I, the rope strength is calculated to remain 60 % of the
original value; while a 40 % retention is expected for case .. It is noted that a much
wider range of failure strengths is present for the first case. It should be also pointed
out here that the residual strengths of Puget Sound ropes were reported to be 50-60
% of the new rope strengths (similar range to that of the yarns) [12]. Our predictions

for the first case agree with their results.
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5 Conclusions

In this study, statistical theory was applied to predict the tensile behavior of small
double-braided ropes. Structural modelling has also been undertaken without super-

position of statistics.

Two cases are considered, one with no friction between strands, the other with
infinite friction. For the no friction case, rupture strains are randomly assigned to all
rope strands based on the experimentaily determined strand rupture-strain distribu-
tion. The computed strain distribution for each given rope strain is then compared
to the randomly assigned rupture strains so as to identify the occurrence of strand
failure. Then the rope strain is increased, and the procedure is repeated until the
maximum rope strength is reached. A second analysis after Platt is also successfully
developed. In this analysis, the average survival probability of strands is determined,
then the total number of survival strands is multiplied by the average load per strand
to calculate the total rope loads. Both approaches provide very good predictions to

the experimental resuits.

For the infinite friction case, failure probability distribution versus strain is de-
termined experimentally for strands, thus permitting conversion of local strain dis-
tribution within the stretched rope to the total failure probability distribution of the
strand assembly (rope). Therefore, the total failure probability versus rope load can
then be generated. Rope strength is thus indicated by the most probable value of
this failure probability distribution.

Furthermore, these proposed approaches can also be used to study local damage
effects on the final performance of ropes. The local wear/abrasion damage is gen-
erally unavoidable and difficuit to consider quantitatively. The strength reduction
is strongly dependent of the severity of local damage; the damage can be included

through the appropriate study of rupture-strain distribution of individual strands.
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Table 1:

1

4

Summary of predictions obtained from different

structural approaches and experiments. No friction.

: average of 5 tests

2

: mean of 160 simulations

: error compared with exptl.

20

PET Rope | Nylon Rope |
Experiment! | Strength (Ib) | 2403 (3%)° 2235 (1%)
Strain 159 (2%) .283 (1%)
Monte Strength (Ib) | 2480(+3%)* | 2275 (+2%)
Carlo? Strain 157 (-1%) 278 (-2%)
Maximum | Strength (lb) | 2377 (-1%) | 2161 (-3%)
Strength Strain 153 (-4%) 276 (-2%)
Failire | Strength (Ib) | 2549 (+6%) | 2297 (+3%)
Probability Strain 156 (-2%) 270 (-3%)
Structural | Strength (Ib) | 2673 (+11%) | 2567 (+15%)
Modeling Strain 170 (+7%) | .300 (+6%)

3

: coeffictent of variation

statistical and



Table 2:

L : average of 5 tests

to experiments, Infinite friction.

Summary of predictions obtained from different approaches compared

1 : error compared with exptl.

21

2 : the most probable values.

3

PET Rope | Nylon Rope
Experiment® | Strength (Ib) | 2403 (3%)* | 2235 (1%)
Strain .159 (2%) 283 (1%)
Failure Strength (1b) | 2323(~3%)* | 1907 (-15%)
Probability? Strain 141 (-11%) { .240 (-15%)
Structural | Strength (Ib) | 2297 (-4%) | 1938 (-13%)
Modeling Strain 143 (-10%) | .246 (-13%)

: coefficient of variation







O bottom crown

@ top crown

Figure 2: Schematic diagram of rope structure showing local-load transfer, the first

break occurs at A.
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WEIBULL DISTRIBUTION
{(a) PET(6B) Yarn
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Figure 3: The Weibull distributions of failure strains of rope yarns. (a) PET Yarn

(b) nylon Yarn.
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Monte Carlo Simulation; Simmpie Tension
(1) 1/4 Inch D.B. PET(88) Rope
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Figure 4: Typical Monte Cario simulation curves of rope load Q, vs. rope strain
€r, rope strength is indicated by the highest peak, Tension only. (a) PET (b)

nylon.
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(a) Simpie Tension: 1/4 Inch DB PET Rope
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Figure 5: Strength distribution curves of ropes showing mean vaiues of 160 Monte

Carlo simulations.  (a} PET (b) nylon.
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Max Strength Analysis: Simple Tension
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Max Strength Analysis: Simpie Tension
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Figure 6: Rope load vs. rope strain obtained from the maximum strength analysis,

Tension only. (a) PET (b) Nylon.
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Figure 7: Failure probability vs. rope strain for two friction constraints, Tensile

only, PET rope. (a) Cumulative failure probability (b) Failure density function

28



1/4 Inch D.B. Nylon(707) ROPE
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Figure 8: Failure probability vs. rope strain for two friction constraints,
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0.4

Tensile

only, Nylon rope. (a) Cumuiative failure probability (b) Failure density function
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FAILURE STRAND STRAIN DISTRIBUTION
{a) From 1/4 Inch DB Nylon Rope; Weibull Distribution

1.14
11 Xo R ]

0.9 9 luew .zass 19.038]

Canp 1 2188 BT
0.8 1 Caze 2 147D 10.638]
0.7 4

0.8 -
0.5 4 New
0.4 +
0.3 -
0.2
0.1 -

o
0.04 0.08 0.12 2.16 6.2 0.24 0.28

FAILURE STRAIN

CUMULATIVE FAILURE PROBABILITY

(b)

s0
490 -
30 1

20 1

10

FAILURE DENSITY FUNCTION

0.04 0.08 0.12 0.18 0.2 0.24 0.28
FAILURE STRAIN

Figure 9: The Weibull Distribution of Failure Strain of Nylon Strand for New and
Used Ropes, (2) Curnulative Failure Probability (b) Failure Density Function
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1/4 Inch D.B. NYLON(707) ROPE
(a) Simple Tennion: Infinite Friction (LLS)
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Figure 10: Failure Probability vs. Rope Load for New and Used Nylon Ropes, Infi-
nite Friction(LLS), (a) Cumulative Failure Probability (b) Failure Density Function
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Figure 11: Failure Probability vs. Rope Load for New and Used Nylon Ropes, Zero
Friction (No Load Sharing), (a) Cumulative Failure Probability (b) Failure Density

Function
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